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Signals with a sparse representation are more
easily analyzed and processed, thus the search for
this representation has become the focus of inten-
sive research. We aim to analyze an optimiza-
tion principle for signal decomposition known as
Basis pursuit; write a parametrizable library for
its fast and efficient implementation, and test its
suitability for practical applications such as sig-
nal and image denoising. As a result, a C library
was created and successfully tested for 1D signal
denoising and a basic extension to 2D signals is
presented as proof of concept.

Given a dictionary Φ = [φ1,φ2, . . . ,φd],
where φk,1≥ k≤ d are vectors, a signal
s = [s1,s2 . . .sN] is represented as a linear
combinations = ∑N

k=1 φkαk with scalar coeffi-
cientsα = [α1,α2, . . . ,αk]. The dictionaryΦ can
be seen as a matrixNxL with prototype signals
as columns such thats= Φα. For overcomplete
dictionaries,L ≫ N and α is non-unique. In
general, a signal’s representation whose coef-
ficients have the smallestℓ1 norm, is a good
approximation of the sparsest representation [1].

Basis pursuit (BP) is an optimization princi-
ple for signal decomposition whose objective is
to find such a representation. The basis pursuit
problem is expressed as:

min‖α‖1 s.t: s= Φα (1)

For overcomplete dictionaries, the search for a so-
lution becomes a large scale optimization prob-
lem. Primal-dual interior-point methods offer a
polynomial-time solution for this problem, with
impact on a wide number of signal processing ap-
plications, for example, denoising.

In denoising, one searches to minimize the
noise levelσ2 = ‖y− s‖2

2; wheres represents the
original signal,n the noise andy = s+ n, the ob-

Two set of images (left and right columns) are
corrupted with white noise and processed using
a Heavyside (HS) dictionary as a proof of con-
cept. A Heavyside dictionaryΦ is a matrix whose
elementsφk,1≥ k≤ d are step functions shifted
with respect to each other. Since HS is not a sep-
arable linear transformation (the 2D transform
is not equivalent to a 1D transform, performed
along a single dimension followed by the same
1D transform performed in the other dimension),
some distortion is noticeable in the diagonal fea-
tures of the images. Other dictionaries, or com-
positions of several dictionaries are expected to
have better results.

served signal. The basis pursuit model for signal
denoising is given by the equation:

min
α

1
2
‖y−Φα‖2

2 +λ‖α‖1 (2)

The solutionα is dependent on the parameter
λ. As λ approaches 0, the equation2 behaves as
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a simple basis pursuit problem, whereα is the set
of coefficients to represent the noisy signaly, and
the residual goes to zero. Asλ grows, the resid-
ual grows to equaly. Thus,λ controls the size of
the residual. Using similar arguments than for the
case of wavelets coefficient thresholding [2, 1],
one setsλ = σ

√

2log(n) wheren is the cardinal-
ity of the dictionary andσ the noise power.

By usingA = [φ,−φ], b = y, C = [λ;−λ], x =
[u;v] andα = u− v equation2 is equivalent to a
least squares problem with positivity constraints:

min‖Ax−b‖2
2+CTx s.t: x≥ 0 (3)

which is equivalent [3, 4] to the perturbed system

minCTx+
1
2
‖γx‖2 +

1
2
‖p‖2

s.t: Ax+δp = b, and x≥ 0 (4)

where p accounts for noise or residual andγ is
used to regularize the problem, ensuring that‖x‖
is bounded [5]. Our resulting equation represents
a constrained optimization problem, with equali-
ties and inequalities as constraints. To solve the
system, the inequalities and equalities constraints
are transformed into the cost function using, bar-
rier methods [5] and Lagrange multipliers [6], re-
spectively. The resulting system is solved by us-
ing Newton’s direction and conjugate gradient it-
eratively, while decreasing the value of the barrier
parameterµ.

A matlab, 1-D implementation of these meth-
ods was reported in 2001 [3], under the principle
of reproducible research. With this implementa-
tion as an starting point, we developed and suc-
cessfully tested a C library that implements basis-
pursuit denoising for 1-D signals, extensible to
2-D signals. This library is to be included in an
open source project called NUMIPAD [7] started
at DDMA, LANL. The NUMIPAD library im-
plements several methods/algorithms to solve in-
verse problems and adaptive decomposition.

Future work
The set of functions implemented will be ex-

tended to more overcomplete dictionaries and

compositions of them. This will improve the abil-
ity to denoise a wide range of signals more effi-
ciently.

Quantitative comparison with other methods
shall also be carried on, in order to conclude on
the suitability of the present methods for practical
applications. Also, extensive performance tests
will be performed to optimize the code and pro-
vide performance comparisons.
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